Planning Ergativity: Cross-linguistic Implications of Morphological Variation

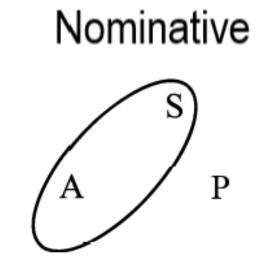
Caroline Andrews¹, Roberto Zariquiey², Sebastian Sauppe¹, Margaux Dubuis¹, & Balthasar Bickel¹

¹University of Zurich, ²Pontificia Universidad Católica del Perú

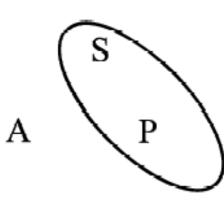
(Momma & Ferreira, 2019)

Example stimuli image

Core Questions


Speakers adapt processing strategies to fit the morphology/ syntax of their language

- 1. What level of grammatical variation determines processing variation?
 - Is it enough to know ERGative vs Nominative?
 - Do we need to know the type of ergative case?
- 2. What processing principles/strategies can vary?
- Attention to different cues? (case, agreement, etc) 🗸
- Incrementality? (i.e., just-in-time planning)


Ergativity and Planning

Ergative Case: Transitive agents (A) have a dedicated case marker

Intransitive subjects (S) are marked like transitive patients (P) \rightarrow Absolutive case

ERGative and NOMinative have different planning commitments:

NOM subject requires:

• Existence of a predicate

ERG subject requires:

- Transitive predicate licensing ERG
- Existence of an object
- Any other language-specific conditions for ERG
- → How do speakers manage the information ergative needs in planning?

Option 1: Verb Co-Planning

• Verb planned alongside ERG

Option 2: Patient Co-Planning

• Patient planned alongside ERG

Option 3: Transitivity-Based (Incremental)

• No co-planning

Known Patterns:

- NOM planning is Incremental (Option 3) (Momma et al. 2016)
- Hindi ERG uses Verb Co-Planning (Option 1) (Zafar & Husain, 2022)

Shipibo

Highly ERG language (Peru; ISO: SHP; Valenzuela, 2003)

- All ergative languages are *split* (Dixon, 1994)
 - \rightarrow Some parts follow ERG and some NOM
- But Shipibo split is very minor
 - A desiderative and an optional progressive
- All others ERG
- \rightarrow As ergative as you can get

References

Momma, Slevc, Phillips (2016). *JEP: LMC*; Zafar & Husain (2022). *AMLaP Poster.*; Valenzuela (2003). *University of Oregon Dissertation*; Momma & Ferreira (2019) *Cognitive Psychology*; Dixon (1994). *Cambridge University Press*

Acknowledgements

Many thanks are due to Albert Maroto, Erlich Mori, Margarita Rodríguez Flores, Glendy Rosario Sanchez Diaz, Bogdan Pricop, Jorge Sato, Pilar Valenzuela, and Mariana Poblete.

Contact: caroline.andrews@uzh.ch

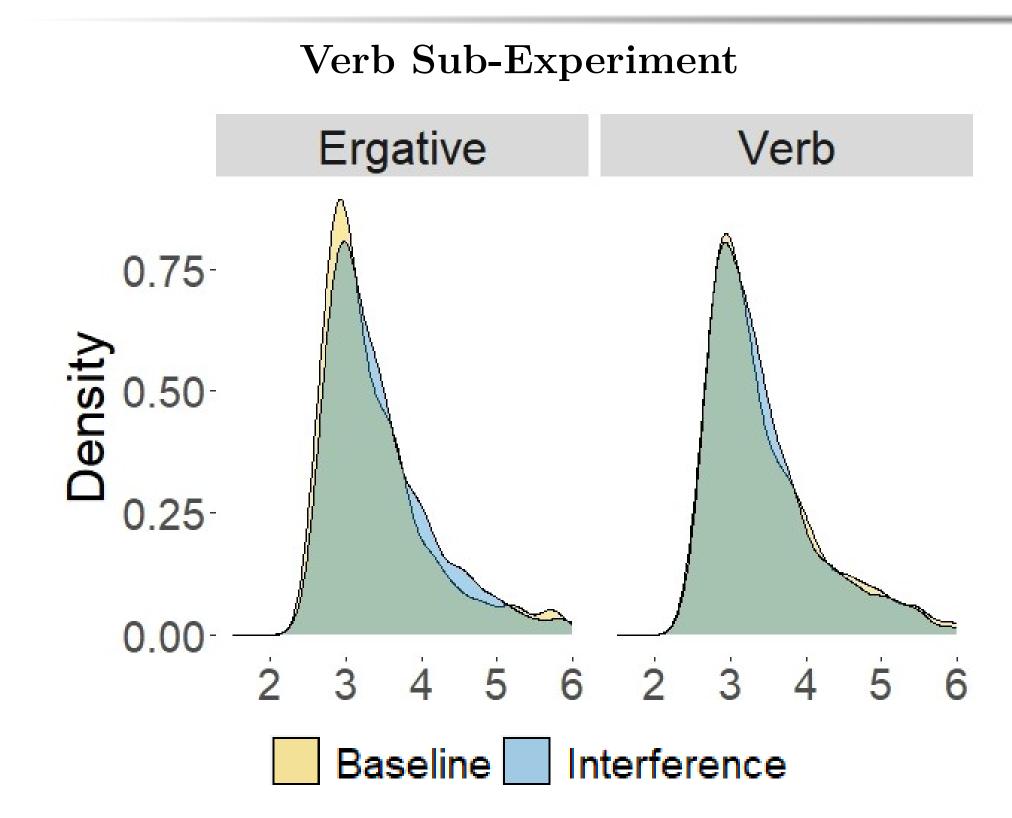
Extended Picture-Word Interference

Semantic interference effect: Semantically <u>related</u> distractor <u>interferes</u> with <u>retrieval</u> of the correct name of the image compared to <u>unrelated</u> distractor condition

- <u>Timing sensitive</u>: Distractor is always at the beginning of the sentence, and can only impact the agent and elements planned with it
- Current experiment uses auditory distractors
- Distractors are drawn from target words on other trials

Two Sub-Experiments

Verb Sub-Experiment: Verb/ERG \times Semantic Relatedness (N=48) Patient Sub-Experiment: Patient/ERG \times Semantic Relatedness (N=27)


Ergative	Verb Sub-Experiment	Patient Sub-Experiment
Baseline condition	Verb Co-Planning Test	Patient Co-Planning Test
'child' vs 'deer'	'break' vs 'write'	'flower' vs 'iguana'

Bayesian distributed Exgaussian model: $\mu \sim Accuracy + Interference * Constituent$

 $\sigma \sim Interference * Constituent$

 $\beta \sim Accuracy + Interference * Constituent$

Results

		95%	Directional
	Mean	HPD	p(posterior)
Accuracy	0.18	[0.11, 0.24]	1
Interference	0.02	[-0.02, 0.07]	0.87
Inter.×Constituent	-0.09	[-0.18, -0.01]	0.98
σ Interference	0.31	[0.10, 0.51]	1
σ Constituent	0.22	[-0.09, 0.56]	0.91
β Accuracy	0.21	[-0.12, 0.31]	1
β Inter.×Constituent	-0.08	[-0.22, 0.04]	0.9
MARGINAL MEANS Es	timate	95% CI	
$\overline{\mathrm{ERG}_{Interference-Baseline}}$ (0.071	[0.013, 0.132]	
	0.022	[-0.084, 0.039]	<u> </u>

- Interference for ERG but not Verb
 - → Verb Co-Planning 🗡

rissorative, i attent sas Emperiment					
		Ergative	Absolutive		
	75-				
sit)	50-				
Density	25-				
0.	00		2 3 4 5 6 Time (seconds)		

Absolutive/Patient Sub-Experiment

		95%	Directional
	Mean	HPD	p(posterior)
ACCURACY	0.28	[0.19, 0.39]	1
Interference	0.05	[-0.00, 0.09]	0.98
Constituent	-0.04	[-0.10, 0.02]	0.90
Inter.×Constituent	-0.03	[-0.12, 0.06]	0.74
$\sigma \times \text{Constituent}$	0.33	[-0.18, 0.86]	0.90
β Accuracy	0.36	[0.23, 0.51]	1
β Inter.×Constituent	-0.11	[-0.27, 0.05]	0.91
MARGINAL MEANS E	Estimate	e 95% CI	
$\beta \ \text{ERG}_{Interference-Baseline}$	0.059	[0.014, 0.11]	\tilde{O}
$\beta \text{ ABS}_{Interference-Baseline}$	0.014	[-0.029, 0.05	9]
	-		

- Slightly more complex results than for Verb
 - Likely due to lower power
- Interference for ERG but not Patient
 - → Patient Co-Planning 🗡

Conclusions

- Shipibo speakers plan ERG NPs independently
 - Consistent semantic interference for ERG shows that the experiment was sensitive enough to find interference if it was present
 - No evidence for co-planning of either the Verb or Patient
 - \rightarrow Transitivity-Based (Incremental) Hypothesis \checkmark
- Shipibo is planned more like NOMinative languages than Hindi
 - Hindi ERG is co-planned with the Verb (Zafar & Husain, 2022)
 - Nominative in Japanese and English is planned incrementally (Momma et al., 2016; Momma & Ferreira, 2019)
- There is variation in planning strategies between languages, based on morphological/syntactic type
 - But broad types (ERG vs NOM) is not enough
 - Planning strategies depend on the whole language context, not just the individual sentence